Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9532, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664507

RESUMEN

The Arabian Peninsula accounts for approximately 6% of the world's coral reefs. Some thrive in extreme environments of temperature and salinity. Using 51 Autonomous Reef Monitoring Structure (ARMS), a standardized non-destructive monitoring device, we investigated the spatial patterns of coral reef cryptobenthic diversity in four ecoregions around the Arabian Peninsula and analyzed how geographical and/or environmental drivers shape those patterns. The mitochondrial cytochrome c oxidase subunit I (COI) gene was used to identify Amplicon Sequence Variants and assign taxonomy of the cryptobenthic organisms collected from the sessile and mobile fractions of each ARMS. Cryptobenthic communities sampled from the two ecoregions in the Red Sea showed to be more diverse than those inhabiting the Arabian (Persian) Gulf and the Gulf of Oman. Geographic distance revealed a stronger relationship with beta diversity in the Mantel partial correlation than environmental distance. However, the two mobile fractions (106-500 µm and 500-2000 µm) also had a significant correlation between environmental distance and beta diversity. In our study, dispersal limitations explained the beta diversity patterns in the selected reefs, supporting the neutral theory of ecology. Still, increasing differences in environmental variables (environmental filtering) also had an effect on the distribution patterns of assemblages inhabiting reefs within short geographic distances. The influence of geographical distance in the cryptofauna assemblages makes these relevant, yet usually ignored, communities in reef functioning vulnerable to large scale coastal development and should be considered in ecosystem management of such projects.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Complejo IV de Transporte de Electrones , Animales , Complejo IV de Transporte de Electrones/genética , Antozoos/genética , Antozoos/clasificación , Océano Índico
2.
Bioscience ; 73(7): 494-512, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37560322

RESUMEN

Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA